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Abstract
We give a short introduction to the inherent structure approach to glassy systems,
with particular emphasis on the Stillinger and Weber (SW) decomposition. We
present some of the results obtained in the framework of spin-glass models
and Lennard-Jones glasses. We discuss how to generalize the standard SW
approach by including the entropy of inherent structures. Finally we discuss
why this approach is probably insufficient to describe the behaviour of some
kinetically constrained models.

1. Introduction

If we are asked what is a glass we will most probably think of window glass. The glassy state
is, however, rather common in nature and many apparently unrelated systems such as structural
glasses, spin glasses, disordered and granular materials or proteins—among others—present
what is called glassy behaviour. All these systems have as a common feature a dramatic slow-
ing down of the equilibration processes when some control parameter, e.g., the temperature
or density, is varied. The equilibration process is frequently non-exponential, and correlation
functions show power-law and stretched-exponential behaviour as opposed to a simple expo-
nential decay. As the characteristic relaxation time may change by several orders of magnitude,
it easily exceeds the observation time. The residual very slow motion leads to a non-equilibrium
phenomenon which changes the properties of the systems, a process commonly called aging.
The greatest difficulty in understanding the slow glassy relaxation dynamics is that a general
non-equilibrium theory to deal with this class of systems is still lacking, and approximations
to the problem remain partial. They usually work either in a limited range of timescales or in
a limited range of temperatures (for instance, mode-coupling theory (MCT) [1]).

Following the ideas formulated more than 30 years ago by Goldstein [2], a convenient
framework for understanding the complex phenomenology of glassy systems is provided by

0953-8984/02/071381+15$30.00 © 2002 IOP Publishing Ltd Printed in the UK 1381

http://stacks.iop.org/cm/14/1381


1382 A Crisanti and F Ritort

energy landscape analysis. The trajectory of the representative point in the configuration
space can be viewed as a path in a multidimensional potential energy surface. The dynamics
is therefore strongly influenced by the topography of the potential energy landscape: local
minima, barriers, basins of attraction and other topological properties all influence the
dynamics.

The idea of Goldstein, formulated at a qualitative level, was formalized years later by
Stillinger and Weber (SW) [3, 4], who proposed a procedure for identifying basins of the
potential energy surface of supercooled liquids. The recipe is rather simple: the set of
all configurations connected to the same local energy minimum by a steepest-descent path
uniquely defines the basin associated with this minimum, which SW named inherent structure
(IS) to stress its intrinsic nature.

The physical motivation behind their proposal follows from the observation that the
potential energy surface of a supercooled liquid contains a large number of local minima.
Therefore the time evolution of the system can be seen as the result of two different processes:
thermal relaxation into basins (intra-basin motion) and thermally activated potential energy
barrier crossing between different basins (inter-basin motion). When the temperature is
lowered down to the order of the critical MCT temperature TMCT the typical barrier height
is of the order of the thermal energy kBTMCT and the inter-basin motion slows, dominating the
relaxation dynamics. If the temperature is further reduced, the relaxation time eventually
becomes of the same order as the physical observation time and the system falls out of
equilibrium since there is not enough time to cross barriers and equilibrate. This defines
the experimental glass transition temperature Tg.

With this picture in mind, it is natural to view the IS as the natural elements for describing
the slow glassy dynamics. If we think of the glassy system as a dynamical system, then the SW
decomposition is a mapping of the true dynamics at a given temperature onto the IS dynamics.
This approach is rather appealing since it naturally leads to universality: all glassy systems
with similar IS dynamics must have similar glassy behaviour.

The recent increase in computational power has significantly improved the analysis of the
energy surface, and IS analysis of the energy surface has been performed for several systems.
The results are both positive and negative; indeed, while the IS formalism has been successful
for the description of the off-equilibrium dynamics and the FDT violations in structural glass
models [5–9], it fails for some kinetically constrained glassy systems [10].

To understand this success/failure we have to analyse the idea behind the SW approach.
The main question that we would like to answer is: what is a good description for the long-time
slow glassy dynamics? The natural approach is to look for some ‘reduced dynamics’ which
includes only those details of the full dynamics relevant on the long timescales. This obviously
implies a coarse graining of the phase space. For example within Mori’s projection method
used to derive the MCT, the phase space is coarse grained by projecting it onto the subspace
spanned by the ‘slow variables’. It is clear that even though the phase space can be always
coarse grained, not all possible coarse grainings will lead to a relevant reduced dynamics. This
is a well known problem in the theory of dynamical systems, where the associated reduced
dynamics is called symbolic dynamics. Indeed from the theory of dynamical systems we know
that a symbolic dynamics gives a good description of the full dynamics only if the mapping
between the full phase space and the coarse-grained one defines what is called a generating
partition; see e.g. [11]. In general for a generic system not only is it not trivial to demonstrate
that a generating partition exists but, even when it does exist, its practical identification remains
a highly non-trivial task with the result that we can answer this question only a posteriori:
we first define a partition and then check whether it reproduces the desired features of the
dynamics.



Inherent structures, configurational entropy and slow glassy dynamics 1383

The SW mapping identifies configurations in an IS basin with the IS itself. Therefore
to be a plausible mapping the systems must spend a lot of time inside the basin. Under this
assumption the dynamics on timescales larger than the typical residence time inside a IS basin
could be quite well described by the IS dynamics. This scenario is typical, e.g., of a many-
valley energy landscape with activated dynamics. This, however, is only one of the plausibility
conditions since other requirements on the dynamics must be satisfied, as discussed later in
this work.

To illustrate our discussion we shall report results from numerical simulations of the finite-
size fully connected Ising spin random orthogonal model (ROM) [12] and binary mixtures of
Lennard-Jones (BMLJ) particles [13]. The former, belonging to the p-spin class [14], is a
fully connected Ising spin-glass model with a random orthogonal interaction matrix, whose
high-temperature dynamics is described in the thermodynamic limit by the MCT [15]. The
latter, a typical system used for studying the structural glass transition, is a system composed
by a mixture of type A and type B particles interacting via a Lennard-Jones potential. One of
the main advantages is that with a suitable choice of the Lennard-Jones potential parameters
for AA, AB and BB interactions, the system does not crystallize simplifying the analysis of
the glass transition.

2. The Stillinger and Weber decomposition

2.1. The SW configurational entropy

The recipe for the SW decomposition is rather simple [3]: the set of all configurations connected
to the same local energy minimum (IS) by a steepest-descent path uniquely defines the basin
associated with the minimum. The phase space is then partitioned into a disjoint set of basins,
usually labelled by eIS, the energy of the IS. Under broad assumptions, e.g., that boundaries
between basins are sub-extensive, this decomposition covers almost all the energy surface and,
collecting all IS with the same energy, the partition sum is written as a sum of basin partition
functions:

ZN(T ) �
∫

de expN [sc(e)− βfb(T , e)] (1)

where Nsc(e) accounts for the entropic contribution arising from the number of basins with
energy eIS = e. We shall call sc(e) the SW configurational entropy or complexity to distinguish
it from other possible definitions taken from mean-field concepts [16, 17]. The term fb(T , e)

is the typical free energy of the basins with energy eIS = e. If all such basins have similar
statistical properties, then fb(T , e) is the free energy of the system when constrained to any
one characteristic basin with eIS = e.

In equilibrium at each temperature T = 1/β the system will visit an eIS-basin with
probability (see equation (1))

PN(eIS, T ) = expN [sc(eIS)− βfb(T , eIS)]/ZN(T ). (2)

Therefore, in the thermodynamic limit, it will populate mainly IS with energy e(T ) fixed by
the condition

sc(e)− βfb(T , e) = maximum (3)

and the free energy (density) of the system becomes

f (T ) = fb(T , e(T ))− T sc(e(T )). (4)
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Figure 1. SW decomposition.

The separation of the free energy into two contributions reflects the timescale separation
between inter-basin and intra-basin motions. Condition (3) is equivalent to that of f (T )
being minimal, i.e.,

∂f

∂e
= ∂fb(T , e)

∂e
− T

∂sc(e)

∂e
= 0. (5)

Note that the minimum condition follows from the balance between the change with energy
of the shape of the basins (∂fb(T , e)/∂e) and of their number (∂sc(e)/∂e).

Often it is useful to write the basin free energy as fb(T , eIS) = eIS+fv(T , eIS) to emphasize
the contribution from the motion inside the basins. Indeed, from (4) the average internal energy
density reads u(T ) = ∂(βfb)/∂β = e(T ) + ∂(βfv)/∂β, where the first term is the (average)
energy of the IS relevant at temperature T while the second term is the contribution from
fluctuations inside the IS basins. The contribution fv is called ‘vibrational’.

The main advantage of the SW decomposition is that it can be easily transformed into
a numerical algorithm, and the recent increase in computational power has greatly helped to
advance the IS analysis of the energy surface. The scheme, summarized in figure 1, follows
directly from the definition.

First we equilibrate the system at a given temperature T ; then, starting from an equilibrium
configuration, the system is instantaneously quenched down to T = 0 by decreasing the
energy along the steepest-descent path. The procedure is repeated several times starting from
uncorrelated equilibrium configurations. In this way, the IS are identified and quantities such
as the eIS-probability distribution or e(T ) computed.

In figure 2 we report e(T ) as a function of temperature T for the ROM of different sizes,
while in figure 3 the same quantity is shown for a BMLJ particles.

From the figures we see a sharp drop in the IS energy as temperature is lowered. For
all systems studied so far—both with discrete and continuous variables—that display a fragile
glass transition, the drop turns out to be strongly correlated with the onset of slow dynamics [18].
Indeed the decrease of eIS is a clear indication that the system explores deeper and deeper basins.

From the knowledge of the eIS-distribution we can reconstruct the SW complexity sc(e)
simply by inverting equation (2):

sc(e) = lnPN(e, T ) + βe + βfv(T , e) + lnZN(T ). (6)

If the energy dependence of fv(T , e) can be neglected, then it is possible to superimpose the
curves for different temperatures. The resulting curve is, except for an unknown constant,
the SW complexity sc(e). This is shown for the ROM in figure 4(a). The data collapse is
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Figure 2. Temperature dependences of e(T ) for the ROM with N = 48 (circles), N = 300
(squares) and N = 1000 (diamonds). The horizontal line is the N → ∞ limit. The arrows
indicate the critical temperatures TD (dynamic or mode coupling) and Tc (static or Kauzmann).
The full line is the curve obtained from the configurational entropy for large N (see also [6]).

0.0 1.0 2.0 3.0 4.0 5.0
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eIS

Figure 3. Temperature dependences of e(T ) for a binary (80:20) mixture of Lennard-Jones
particles. Simulations were done for 1000 particles at a fixed density of 1.2 (data courtesy of
Kob et al; see also [19]).

rather good for e < −1.8, while above this value the energy dependence of fv(T , e) cannot be
neglected. The line is the quadratic best fit which gives the value ec � −1.944 for the critical
energy where sc(e) vanishes, in good agreement with the theoretical result e1rsb = −1.936 [12].
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Figure 4. (a) Configurational entropy as a function of energy for the ROM. The data are for
system sizes N = 48 (empty circles) and N = 300 (filled circles), and temperatures T = 0.4,
0.5, 0.6, 0.7, 0.8, 0.9 and 1.0. For each curve the unknown constant has been fixed to maximize
the overlap between the data and the theoretical result [12]. The curve is the quadratic best fit.
(b) Configurational entropy density as a function of temperature. The curve is the result from the
best fit of sc(e)while the symbols show the results from the temperature integration of equation (7)
forN = 48 (empty circles),N = 300 (empty triangles) andN = 1000 (filled circles) (see also [6]).

A direct consequence of the relation fv(T , e) � fv(T ) for e < −1.8 is that it drops out
from equation (5), so the minimum condition simply reads

dsc(e)

de
= 1

T
. (7)

From this relation, by integrating the T -dependence of de/T , we can compute sc as a function
of T . The result obtained using the data of figure 2 is shown in figure 4, panel (b). The line is
the result valid for large N obtained using the quadratic best fit of panel (a).

As discussed above, the vibrational contribution fv follows from the motion inside the
IS basins. Its independence of eIS means that all basins are equivalent, i.e., have the same
shape. In general, this is not the case and the contribution of fv must be included. For systems
with continuous variables, for example BMLJ particles, fv can be calculated at low T in the
harmonic approximation by expanding the energy about the IS configuration:

fv(T , eIS) = kBT

3N−3∑
i=1

ln[h̄ωi(eIS)/kBT ] (8)

where ωi(eIS) is the frequency of the ith normal mode in the eIS-basin, which in general
depends on the specific IS configuration, i.e., different IS with the same eIS may have different
normal modes. If all basins had the same curvature, then fv would only be a function of T and
we would be back to the previous case. In the BMLJ system, basins with different eIS have
different curvatures [9] and hence, in contrast with the ROM case, fv is a function of both T
and eIS.

2.2. Violation of FDT and effective temperature

More information on the structure of the energy surface can be obtained from non-equilibrium
relaxation processes. We shall consider here the non-equilibrium behaviour of the system
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Figure 5. (a) Equilibrium average eIS a function of temperature. The arrows indicate the
construction of the effective temperature Te(eIS). (b) Average IS energy for the ROM as a function
of time for initial equilibrium temperature Ti = 3.0 and final temperature Tf = 0.1, 0.2, 0.3 and
0.4. The average is over 300 initial configurations. The system size is N = 300. The dashed lines
indicate the two regimes, see also [7].

following an instantaneous quench from an equilibrium state at a temperature Ti above the
glass transition Tg to a temperature Tf below it.

For temperatures close to the mode-coupling critical temperature, where the intra-basin
and inter-basin timescales become well separated, the vibrational intra-basin dynamics quickly
equilibrates at the thermal bath temperature Tf . The equilibration of the entire system on the
other hand is rather slow, being dominated by the inter-valley processes. Therefore the fast
equilibration of the intra-basin degrees of freedom is followed by a much slower process during
which the system populates deeper and deeper eIS-levels.

In the right-hand panel of figure 5 we show the average eIS-energy as a function of time
after the quench for the ROM. The figure reveals that the relaxation process can be divided
into two different regimes: a first regime with a power law independent of Tf ; and a second
regime with a power law independent of both Ti and Tf . The final temperature Tf controls
the crossover between the two regimes. A similar behaviour has been observed in molecular
dynamics simulations of supercooled liquids [19].

The two regimes are associated with different relaxation processes. In the first part
the system has enough energy, and relaxation is mainly due to path search out of basins
through saddles of energy lower than kBTf . This part depends only on the initial equilibrium
temperature Ti and should slow down as Ti decreases since, as is reasonable, lower states
are surrounded by higher barriers. This process stops when all barrier heights become
O(kBTf); the relaxation the slows down since it can proceed only via activated inter-valley
processes.

Under the assumption of a fast equilibration of the intra-basin motion, we can define
an effective temperature Te as the temperature that the system would have when populating
the basins of depth eIS. The temperature Te can be obtained from (5) with the vibrational
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Figure 6. Left: solutions of equation (9) for several values of Tf for the BMLJ system. Right:
eIS as a function of time, following the temperature quench. The arrows show graphically the
procedure which connects the value of eIS(t) to the Te-value, once Tf is known (data courtesy of
Sciortino and Tartaglia; see also [9]).

contribution evaluated at the bath temperature Tf , since we assume local equilibrium of the
intra-basin motion, and solving for T [9]:

Te(eIS, Tf) = 1 + (∂/∂eIS)fv(Tf , eIS)

(∂/∂eIS)sc(eIS)
. (9)

The effective temperature Te for the BMLJ particles is shown in figure 6. If fv is not a function
of eIS, as in the case of the ROM, the above equation reduces to [6–8]

Te(eIS)
−1 = ∂sc(eIS)

∂eIS
(10)

and curves with different Tf coincide; see figure 5. In the non-equilibrium relaxation process
the value of eIS will vary with time, making Te a function of time, since the rhs of equations (9)
and (10) must be evaluated at eIS(t). For each time t the value of Te(t) can then be obtained
graphically as shown in figures 5 and 6.

The predictions of the quasi-equilibrium assumption can be tested by studying the response
of a system that is quenched to Tf at time t = 0 to a perturbation switched on at some later
time tw. In the linear response regime the average value of any observable A at time t to a
perturbation fieldhA conjugate toA switched on at tw < t is 〈A(t)〉 = χZFC(t, tw)hA, where the
zero-field-cooled susceptibility χZFC(t, tw) is related to the AA correlation function through
the famous fluctuation-dissipation formula [20]4

χZFC(t, tw) = 1

T

[〈A(t)A(t)〉 − 〈A(t)A(tw)〉
]∣∣
hA=0 (11)

which predicts that the response is proportional to T −1. Under the assumption that the intra-
valley motion quickly equilibrates to the thermal bath temperature Tf , while the equilibration
of the entire system is dominated by the slow inter-valley processes, it follows that for short
4 This expression and its differential counterpart are valid in the equilibrium regime. In the non-equilibrium regime
the validity is based on the existence of an equiprobability principle which asserts that all basins with the same free
energy are equiprobable [28].
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Figure 7. Integrated response function as a function of IS correlation function, i.e., the correlation
between different IS configurations, for the ROM. The dashed line has slope T −1

f = 5.0, while the
full lines are the predictions from (10): Te(211) � 0.694, Te(216) � 0.634 and Te(219) � 0.608.
The dot–dashed line is Te for tw = 211 drawn for comparison, see also [7].

times, T = Tf , since the intra-basin motion is being probed, while for long times, T = Te,
since now it is the inter-basin motion that is to be probed. The first regime corresponds to
the region where the correlation function assumes values between the equal time and plateau
values, while in the second regime it assumes values below the plateau value.

In figure 7 we show the response versus correlation plot for the ROM. The analogous plot
for the BMLJ particles is in figure 8. As follows from both figures, for short times the plot
is linear with the expected T −1

f -slope, properly describing the equilibrium condition of the
intra-basin dynamics with the external bath. At larger times, the inter-basin motion sets in and
the slope becomes T −1

e , in very good agreement with the value predicted by equation (9).

3. Beyond the Stillinger and Weber projection: the free-energy landscape

In the previous sections the main effort has been to characterize glassy dynamics by studying
the structure of minima of the potential energy landscape. Nevertheless, as has been said
already, valleys are not only characterized by their energy at the bottom but also by the size of
the basins of attraction. The decomposition proposed by SW is meaningful if the typical time
required to explore a given IS or valley depends only on the energy of that valley (defined,
for instance, by the energy eIS of its associated minimum). But one can imagine a situation
where IS with the same energy have completely different basins of attraction. In that case
the probability of exploring a given IS depends not only on its energy but also on the size of
the basin of attraction or its associated entropy. The most natural approach in which these
considerations are properly taken into account is to assume that every IS is characterized by
its free energy FIS(T ) defined as

exp(−βFIS(T )) =
∑
C∈IS

exp(−βE(C)) (12)



1390 A Crisanti and F Ritort

0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
αα

k(τ)

0

0.1

0.2

0.3

0.4

0.5

0.6

〈ρ
α κ〉(

τ)

Figure 8. Response 〈ραk (τ )〉 versus the dynamical structure factor Sααk (t) ≡ 〈ραk (t)ρα∗
k (0)〉, where
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tw = 1024 (squares) and tw = 16384 (circles). Dashed lines have slope T −1

f while full lines have
slope T −1

e . Data courtesy of Sciortino and Tartaglia; see also [9].

which corresponds to the free energy of the portion of the whole phase space containing all
configurations belonging to the specific IS. We can now extend [21] the ideas of SW to include
the free energy in the formulation by using the following equiprobability assumption: when
the system is in equilibrium at a given temperature, valleys with the same free energy have
the same probability of being explored. Both the number of configurations contained in each
valley and the number g(F, T ) of valleys with a given free energy grow exponentially with the
size of the system, leading to a proper thermodynamic formulation in the large-volume limit.
The equilibrium partition function can be written in terms of the IS free energies (12) as

Z =
∑

C
exp(−βE(C)) =

∑
IS

∑
C∈IS

exp(−βE(C)) =
∑

IS

exp(−βFIS(T )). (13)

At a given temperature, the average free energy among all valleys is determined by a balance
between the probability of exploring valleys with free F (proportional to the Boltzmann factor
exp(−βF)) and the number g(F, T ) of valleys with that free energy. Hence, the equilibrium
free energy is given by

exp(−βFeq) =
∑

IS

exp(−βFIS(T )) =
∑
F

g(F, T ) exp(−βF)

=
∑
F

exp(Sc(F, T )− βF) =
∑
F

exp(−β&(F, T )) (14)

where Sc(F, T ) = log(g(F, T )) defines the configurational entropy while the function
&(F, T ) = F − T Sc(F, T ) is the thermodynamic potential associated with it. Because & is
an extensive quantity, the leading contribution to (14) is in the large-volume limit determined
by the minimum of &(F, T ) as a function of F :

Feq(T ) = &(F ∗, T ) = F ∗ − T Sc(F
∗, T ) (15)

1

T
= ∂Sc(F, T )

∂F

∣∣∣∣
F=F ∗

. (16)
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Note that the average free energyF ∗ does not coincide with the equilibrium free energyFeq(T ):
it is always higher,F ∗ = Feq(T )+T Sc(F ∗, T ), the difference being the configurational entropy
evaluated at F ∗.

It is interesting to note the parallelism of this coarse-grained description and the standard
equilibrium theory. In that case, the relevant entities are the configurations and the equilibrium
energy is given by a balance between the Boltzmann factor exp(−βE) and the degeneracy
g(E) = exp(S(E)) where S(E) is the entropy. The relation 1/T = ∂S(E)/∂E yields the
thermodynamics. Nevertheless, an important difference between the standard equilibrium
theory and the present free-energy valley decomposition must be stressed. Both the equilibrium
entropy S(E) and the SW configurational entropy Sc(E) are only functions of the energy
while the configurational entropy Sc(F, T ) in this new formalism depends on both the free
energy and the temperature. Therefore the configurational entropy turns out to be a more
complicated object when expressed in terms of the free energy than in terms of the energy of
the valleys.

A natural question arises now: what are the assumptions behind the validity of this free-
energy decomposition? The main assumption in Boltzmann theory is the equiprobability
assumption, i.e., all configurations with identical energy have the same probability in
equilibrium. This introduces the equilibrium measure used in ensemble theory which is at the
root of statistical mechanics. For glassy systems a similar idea lies behind the physical meaning
of the present free-energy decomposition. One assumes [21] the validity of an equiprobability
hypothesis stating that valleys with identical free energy have the same probability of being
explored. This gives a flat measure in equilibrium which, if extended to the non-equilibrium
case, is analogous to the Edwards measure proposed in the context of granular media [22–24].
The main difference between the Edwards measure and this new free-energy measure is that
the former occurs in a non-stationary sheared situation [25] or even in a stationary one (for
instance, under tapping [26]) at zero temperature, while the latter occurs in a non-stationary
relaxational regime at finite temperature.

In recent work [21] the validity of this free-energy measure has been explicitly tested by
studying the configurational entropy of simple models. This has been done by introducing a
probabilistic argument to compute the free energy of the IS. In equilibrium, the probability
of exploring a given IS is given by pIS(T ) = exp(−β(FIS(T ) − Feq(T ))). Then one can run
a simulation and, after equilibrating, collect the number of times NIS that a particular IS is
found among a total number of quenches Nrun. This yields pIS(T ) = NIS/Nrun from which
we have an estimate of the IS free energy: FIS(T ) = −T log(pIS(T )) + Feq(T ). By using
this method, the configurational entropy Sc(F, T ) has been computed in [21] for the ROM
and the Sherrington–Kirkpatrick model, a model with a completely different energy surface
topology [27]. The average free energy of the IS, F ∗, can be obtained from the minimum
of the potential &(F, T ). The difference between the minimum F ∗(T ) and the equilibrium
free energy Feq(T ) yields the configurational entropy at the given temperature Sc(F ∗, T ).
Moreover, from the shape of &(F, T ) it is possible to infer both the type of transition of
the model (one step or infinite replica symmetry breaking) and the critical or Kauzmann
temperature. We note that, as in the case of the SW results discussed in the previous section,
the method works only for finite-sized systems where the number of different IS is not too
large.

As a generalization of this free-energy scenario to the dynamics, it has been proposed that
the effective temperature in structural glasses is related to their fragility [28]. Moreover, the
effective temperature is also given by the slope of the configurational entropy evaluated at the
threshold free energy. This off-equilibrium scenario complements the new measure discussed
above and offers a scenario for the glass transition driven by entropic barriers.
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4. Models with kinetic constraints

Another class of interesting models are the kinetically constrained models. These models
are characterized by extremely simple thermodynamic behaviour without any type of phase
transition, but with complicated slow dynamics due the existence of kinetic constraints. The
constraints are such that detailed balance and ergodicity are preserved despite the infinite
energy barriers that they introduce. In some senses they are similar to hard-sphere models
where some configurations are excluded from the configurational space, although with much
simpler static properties. The simplest example of this family of models is the kinetically
constrained Ising paramagnet where there is no interaction between the spins (and hence there
is no critical point even at T = 0) but some transitions are excluded in the dynamics. The
description of these models within an IS formalism has been studied in detail in [10]. Here
we only want to make some general comments on the validity of the IS description of the
dynamics; for a more detailed discussion we refer the reader to [10].

In general, in most of the dynamically constrained models the energy function can take
only a discrete set of values; therefore there is accidental degeneracy in the density of states.
One of the main problems related to this and discussed in [10] is that it is difficult to properly
define the IS decomposition itself. The steepest-descent procedure for mapping a configuration
onto a valley is not well defined because it is not unique. From a physical point of view
this does not seem to be a serious problem. Suppose we add to the original Hamiltonian
a random perturbation term P which lifts the degeneracy. If the system is stochastically
stable (the dynamical behaviour in the limit P → 0 coincides with the dynamical behaviour
of the unperturbed system), then one can work with the perturbed system and make the
perturbation vanish at a later stage. Because the dynamics of the vast majority of glassy
systems is probably stochastically stable, we believe that this is not a serious problem of the
approach.

But there is another problem which seriously compromises the validity of the IS approach.
One can show that the IS decomposition is completely identical for some models with
completely different dynamical constraints, with the result that the SW configurational
entropies are exactly the same. Because the dynamics of these models are known to be
extremely different, it is then clear that the configurational entropy cannot describe their
relaxational dynamics. Obviously, to cope with this problem one can go further and describe
the dynamical behaviour in terms of the configurational entropy, but now defined in terms
of the free energy. This route could eventually solve the problem because now, although the
energies of the different IS are identical for all models, the entropic contributions (as explained
in the preceding section) can be completely different. Nevertheless, we believe that going
beyond the standard SW description will not really solve another more essential problem
present in systems of this kind. One of the main features of these models is that relaxation
occurs by the coarsening of a typical length scale. This length scale reflects the typical size
of spatial regions which are ordered into the ground-state structure. As relaxation proceeds,
the configuration of the system approaches that of the ground state. Now the ground state in
this class of systems corresponds to the crystal structure in structural glasses. So the relevant
question is: how important is the existence of a crystalline configuration in structural glasses
as far as the glass transition phenomenology is concerned? Light scattering measurements
suggest that relaxation in the supercooled region does not proceed by crystallization of larger
and larger regions and that the structure of the glass is always that of a liquid. This result is in
agreement with the very well known fact that some spin glasses with disorder (which do not
have a crystalline structure) display a behaviour similar to that of structural glasses. Hence
we must conclude that the slow dynamics in glasses is not necessarily related to a coarsening
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process towards a single and unique structure. The physical mechanism behind relaxation
must then be some kind of thermally activated entropic search, but without any kind of growing
order in the system. On the other hand, the existence of a some kind of coarsening process
in the relaxation will preclude the validity of the equiprobability hypothesis, and hence the
existence of a flat measure for the free energy. Therefore kinetically constrained models, while
displaying non-equilibrium behaviour strikingly similar to that of glasses, cannot be described
in a framework such as that proposed in the previous section. Nevertheless, a careful study of
the constrained Ising chain in terms of the free energy could certainly be interesting to clarify
this issue.

5. Conclusions

There is still more work to be done. Most of the lines of research presented here will clearly
see a fast development in the near future when our understanding of the validity of general
scenarios for the description of glassy systems improves. The most important results that we
have tried to propose in this paper can be summarized in the form of answers to the following
set of selected questions:

• When can the SW decomposition be expected to work fairly well? A statistical description
of valleys in terms of IS seems to be useful for systems where valleys are very narrow
(which means that they contain an exponentially large number of configurations scaling
like exp(αN), but with α � 1 to ensure that the entropic contribution to the valley free
energy is small) or valleys are very large but with very similar shape. The latter assumption
corresponds to the claim that the distribution of instantaneous frequency modes computed
in the harmonic approximation for those valleys is not too broad. This is indeed the
case for, e.g., BMLJ [29] systems. Obviously, glassy systems where there is a highly
heterogeneous distribution of basins of attraction for the IS cannot be described within
the usual SW approach.

• How can one improve the standard SW approach? Basins of attraction can be included
in the dynamical formulation by supposing that basins are visited according to their
free energy. Therefore, in equilibrium at temperature T , the probability of visiting
a valley with free energy F is proportional to the Boltzmann factor exp(−βF) and
to the number g(F, T ) = exp(Sc(F, t)) of such valleys, where Sc(F, T ) defines the
configurational entropy. This free-energy measure can be further extended to deal with
non-equilibrium processes where the probability of jumping among valleys is simply
given by the entropic term g(F ∗, T ) evaluated at the time-dependent threshold free
energy F ∗ = F(t). This description offers an interpretation of the violation of FDT in
terms of a single timescale, given by the effective temperature evaluated at the threshold
1/Te(t) = (∂Sc(F, T )/∂F )F=F ∗ . The validity of this flat measure in terms of the free
energy in the off-equilibrium regime remains one of the most fascinating problems when
trying to construct a general theory for slowly relaxing non-equilibrium processes in
complex free-energy landscapes.

• What is the utility of investigating relatively small systems? As we have stressed in the
previous point, a description of basins in glassy systems must be constructed in terms of
the free-energy landscape. The appropriate configurational entropy is then a function of
both the free energy and temperature. Within the IS formalism an estimate of the free
energy of each IS can be obtained by sampling the IS space. A good sampling requires
that each IS is visited with a finite frequency. If the number of IS is too large, this is
not possible. Remembering that the total number of IS becomes exponentially large with
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increasing volume of the system, we conclude that sizes must be modest for the procedure
to be implemented. Moreover, in the case of mean-field models, one can do careful checks
of the main theoretical assumptions by comparing numerical results with analytical ones.
Furthermore, a theoretical analysis of finite-N corrections in mean-field systems could
give a theoretical framework for activated processes in glassy systems.

• Is the IS formalism relevant for coarsening models? In principle, for systems where
a given pattern grows with time the dynamics cannot be expressed in terms of jumps
among uncorrelated structures. Therefore, the entropic assumption is not justified and a
dynamical measure in terms of the free-energy landscape does not hold any longer. In
this respect it would be extremely interesting to find a coarsening model where the IS
formalism in terms of the free energy works. To our knowledge, such an example has not
yet been provided.

In summary, the IS description of dynamics in terms of the energy and, more generally,
in terms of the free energy of basins provides the first approximate scheme to deal with the
dynamics of complex systems. There are still points which are obscure and not well understood,
but these will we hope be progressively clarified in the near future. This will then provide
a more complete understanding of the main physical mechanisms behind the elusive glass
transition problem.
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